How does Hibernate Search (Lucene indexing) work?

Question: How does Hibernate Search (Lucene indexing) work?

I am using Hibernate Search built on top of Lucene indexing. If indexes are created against database table the performance will be good
in returning the results.

My question is, once indexes are created, if we query for the results does Hibernate Search fetch results from the original database
table using the created indexes? or does it not need to hit the database to fetch the results?

Thanks!
Answer:

Unless you use Projections the indexes are used only to identify the set of primary keys matching the query, these are then used to
load the entities from the Database.

There are many good reasons for this:

+ As you pointed out, we don't store all data in the index: a larger index is a slower index

Adding all needed metadata to the index would make indexing a very expensive operation

 Value extraction from the index is not efficient at all: it's good at queries, no more

Relational databases are very good at loading data by primary key

- If you DB isn't good enough, second level cache is excellent to load by primary key
» By loading from the DB we guarantee consistency especially with async indexing

- By loading from the DB you have entities participate in Transactions and isolation

That said, if you don't need fully managed entities you can use Projections to load the fields you annotated as Stored.YES. A common
pattern is to provide preview of matches using projections, and then when the user clicks for details to load the full entity matching
that result.


http://docs.jboss.org/hibernate/search/4.2/reference/en-US/html_single/#projections

	How does Hibernate Search (Lucene indexing) work?

